Modern C++ Interfaces

Modern C++ Interfaces

Complexity, Emergent Simplicity, SFINAE, and
Second Order Properties of Types

Stephen C. Dewhurst
stevedewhurst.com

About Steve Dewhurst

Steve Dewhurst is the cofounder and president of Semantics
Consulting, Inc. He is the author of the books C++ Common
Knowledge and C++ Gotchas, and the co-author of Programming in
C++. He has written numerous technical articles on C++
programming techniques and compiler design. Steve served on
both the ANSI/ISO C++ standardization committee and the
ANSI/IEEE Pascal standardization committee.

Steve has consulted for projects in areas such as compiler design,
embedded telecommunications, e-commerce, and derivative
securities trading. He was programming track chair of Embedded
Systems, a Visiting Scientist at CERT and a Visiting Professor of
Computer Science at Jackson State University.

Steve was a contributing editor for The C/C++ User's Journal, an
editorial board member for The C++ Report, and a cofounder and
editorial board member of The C++ Journal.

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Outline

= Some years ago, Policy-Based Design techniques devolved
implementation decisions to users of interfaces.

= More recently, interfaces seem to prefer to move such decisions
away from users of interfaces to their implementers.

= Lately, there seems to be a great increase in use of SFINAE-based
techniques in tandem with Modern C++. Why?

* Increased complexity implies need for more nuanced
interfaces.

* Increased interface complexity implies that we are now
embedding not just our experience in implementations, we’re
embedding our judgement in our interfaces.

* New language features and libraries make it feasible.

Outline

v Hypothesis: We've hit a cusp such that C++ is complex enough that
it’s use is actually becoming simpler due to the necessity of using

¢ convention,

¢ idiom,

* embedded experience,

* and “Do What I Mean” interfaces.

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Wishful Thinking...

= Recently, our code has evolved in the direction of relieving the
user from, well, knowing much of anything.

= We’ve gone from comments...

// DO NOT EVEN THINK OF PASSING AN ARRAY OF COMPLEX
// TYPES TO THIS FUNCTION!!!

template <typename T>

T *copy_it(T const *src, size t n) {

~rons

}

Totalitarianism...

= ..to enforcing our will for their own good...

template <typename T>
T *copy_it(T const *src, size t n) {
static_assert(
is_trivially _copyable<T>::value,
"array type must be memcopy-able"

);

~rons

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Embedding Experience

= ..to embedding our design experience directly in self-
maintaining code.

template <typename T>
inline T *copy_array(T const *s, size t n) {
size t const amt = sizeof(T) * n;
T *d = static_cast<T *>(::operator new(amt));
if (is_trivially copyable<T>::value)
d = static_cast<T *>(memcpy(d, s, amt));
else if (has_nothrow copy constructor<T>::value)
for (size t i =0; i !=n; +i) {
new (&d[1i]) T (s[i]);
}

else ...

Embedding Experience in C++17

= Moving faster than is typical, this idiom has made its way into the
C++ standard.

template <typename T>
inline T *copy array(T const *s, size t n) {
size t const amt = sizeof(T) * n;
T *d = static_cast<T *>(::operator new(amt));
if constexpr (is_trivially copyable<T>::value)
d = static_cast<T *>(memcpy(d, s, amt));
else if
constexpr (has_nothrow_copy constructor<T>: :value)
for (size t i =0; i !=n; +i) {
new (&d[1i]) T (s[i]);
}

else ...

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Embedding Judgment

= We’ve simplified maintenance and use of implementations by
embedding our experience.

» Asimplementations become more complex, some of that
complexity inevitably leaks out into interfaces.

* As aresult, designers have been embedding their judgement into
interfaces.

= This has the effect of simplifying use of the interface, even if the
actual interface is more complex due to its inflection by the
nuanced implementation.

Language Changes That Impelled

» [ncreasing complexity in stating what your intentions are:

* Preferential treatment of initializer-list arguments in overload
resolution

* Greedy universal references
* Need to extend functionality in a backward-compatible way

* Increasingly fine-grain distinguishability in overloaded
function templates

* None of these individually caused the shift, but the language
complexity reached a tipping point, where designers could no
longer trust that their interfaces would allow the compiler and
user to interpret an interface in the same way.

v To be clear: Increased language complexity is not an advantage in
itself. However, it leads to greater expressiveness than would a less

complex language. Simplicity is an emergent property.
10

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Language Changes That Enabled

Templated using declarations

Default template arguments for function templates
= constexpr

= <type traits>,in particular those aspects that require
participation by the compiler.

= ..and some assistance from variadic templates.

11

SFINAE is Simple

= “Substitution Failure Is Not An Error” in template argument
deduction.

* Thatis, if argument deduction finds at least one match, the failed
matches aren’t errors, as in:

template <typename T> void f(T);
template <typename T> void f(T *);

~rony

£(1729); // no error, specializes first f

= The call £(1729) can match £(T), but not £(T *).
= The failure to match f(T *) is notan error.
» If £(T) were not present, it would be an error.

12

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

SFINAE in C++03 Was a Pain in the Neck

= Unlike a constraint implemented with a static assertion, SFINAE
must be applied to an interface, before a decision is made.

= In the template parameter list,

template <typename T>
void in the return type,
munge_shape(T const &a) {
o, or in the argument list.
} \
It’s too late here, although we can static_assert.
* [n C++03, function templates could not have default template
parameters.

= This typically left us to apply SFINAE to return types and

argument lists. With unfortunate syntactic results.
13

SFINAE in Modern C++

* The augmented language makes it necessary to ask more
compile-time questions.
* We have more choices, and with great power comes great
responsibility.
= Happily, the augmented language provides facilities to help us to
ask the questions.

v’ One major piece: the fully-standard <type_traits> header file
provides a collection of useful predicates (some of which are
compiler intrinsics) and a syntactic model on which to build more
complex predicates.

14

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Default Function Template Arguments

v’ In C++11, function templates may have default template
arguments.

» This permits syntactic improvement because we no longer have
to hide a constraint within some other facet of the declaration.

template <

typename T,

typename = enable_1if _t<is_base_of<Shape, T>::value>
>
void munge_shape(T const &) { ~~~ }

= Now substitution will fail if it can’t determine the type of the
default template parameter.

15

Template Typedef

v’ In syntactic situations like this, use of using is of use:
template <typename T>

using IsShape = typename
enable if<is base of<Shape, T>::value>::type;

= Our snobby function template is now fairly readable:

template <typename T, typename = IsShape<T>>
void munge_shape(T const &a);

16

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

A Constructor Overload Issue
= Let’s look at a sporadic problem with constructor overloading:

template <typename T>
class Heap {
public:
Heap(size t n, T const &v);
template <typename In>
Heap(In b, In e); // range init

~rons

s

17

Constructor Overload Code Smell

* [nterference by the range initialization member template may
give surprising results:

Heap<int> h (5, 9); // range initialization!

* The member template is a better match than the non-template
two-argument constructor.

= Why?
* The template is an exact match; Inis deduced to be int.

* The non-template requires a conversion on the first argument
from intto size t.

v’ I intended that constructor for input iterators only! Do what I
mean!

18

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Syntactic Difficulties

Older template metaprogramming features of the standard
library can be syntactically challenging:

is same< // is this a random access STL iterator?
typename iterator traits<Iter>::iterator_category,
random_access_iterator tag

>::value

The expression uses long identifiers.

[t also requires explicit use of the keyword typename to identify
the nested name iterator_category as a type.

A “template typedef” alias can simplify the syntax...

19

Simplifying With “Template Typedef”

For example, these alias templates can categorize iterators:

template <typename It>
using Category
= typename iterator traits<It>::iterator category;

template <typename It>

using is_exactly rand
= is same<Category<It>, random access iterator tag>;

20

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

10

Modern C++ Interfaces

Simplifying With Alias Declarations

» This alias template can determine if an iterator is an STL input
iterator:

template <typename It>
using is in = is_true<

is_exactly in<It>::value || is_for<It>::value
>;

» The is_true template is non-standard.
* One last syntactic cleanup:

template <typename It>
using IsIn
= typename enable if<is in<It>::value>::type;

21

Disabling the Constructor with SFINAE

template <typename T>

class Heap {

public:
template <typename In, typename = IsIn<In>>
Heap(In b, In e);

};

= Here, the required constraint is that In be an input iterator.
v’ That’s what [meant!

22

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

11

Modern C++ Interfaces

Greedy Universal Members

= Universal references are very accommodating:

template <typename T>

class X {
public:
void operation(T const &); // #1: lvalue version
void operation(T &R&); // #2: rvalue version
template <typename S>
void operation(S &R&); // #3: universal version
}s

* They often provide somewhat surprising better matches than
functions without universal reference arguments.

23

Similar in Decay

» The std: :decay type trait models the conversions and decay that
occur when passing by value.

= We can use mutual decay to decide whether two types are “pretty
much” the same:

template <typename S, typename T>
using similar = is_same<decay t<S>, decay t<T>>;

template <typename S, typename T>
using NotSimilar = enable if t<!similar<S, T>::value>;

24

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Limiting Greediness

= Now we can use SFINAE to limit the use of the universal version

of operation to types that are “not similar to” the type used to
specialize X:

template <typename T>

class X {

public:
void operation(T const &); // #1: lvalue version
void operation(T &&); // #2: rvalue version

template <typename S,
typename = NotSimilar<S, T>>
void operation(S &&); // #3: universal version
// Do What I Mean:
}s // OK as long as S is not
// "similar" to T

25

Self-Identification for SFINAE

SFINAE for interface design is so effective, that some types are
designed to facilitate it by making complex properties easy to
determine.

For example, complete specializations of standard function
objects identify themselves as “transparent.”

template <>
struct less<void> {
template <class T, class U>
constexpr auto operator()(T &t, U & u) const {
return std: :forward<T>(t)
< std::forward<U>(u);
}
using is_transparent = void;

}s

26

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

13

Modern C++ Interfaces

SFINAE, Again

» Standard set has members that are considered only if the set’s

comparator is transparent:

template <typename T, typename Comp ~~~>
class set {
public:
iter lower bound(const T &key);
template <typename Key,
typename = typename Comp::1is_transparent>
iter lower bound(const Key &key);

};

Effectively, the interface to set is modified based on self-

identified properties of its comparator.
27

Self-Identification

For another example, consider a scoped enum that has been
tricked up to act like a container of enumerators:*

enum class bits {
begin = oxe1,
one = begin, two = 0X02, three = 0Xo4,
four = 0X08, five = X109, six = OX20, seven = OX40,
end = 0X80,
1s_enum_container
}s
template <typename E>
using IsEnumContainer =
std::enable_if t<sizeof(E::is_enum container)>;

* Thanks to Dan Saks for the example. 28

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

14

Modern C++ Interfaces

Volunteering

* Only enums that self-identify as enum containers have container-

like operations on their enumerators:

template <
typename T,
T(&next)(T) = next_enum,
T(&rev)(T) = prev_enum,
typename = IsEnumContainer<T>>
class enum_iterator {

~rons

s

29

Predicate Composition

Compile time predicates like those in <type_traits> are often
composed to test complex type properties.

We can simplify the composition through use of a variadic
template template parameter pack:

template <template <typename...> class... Preds>
struct Compose;

30

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

15

Modern C++ Interfaces

Using Composed Predicates

= We can use composition like this:

using Happy = Compose<is_class, is_transparent, is big>;

~rony

static_assert(Happy::eval<T>(), "Unhappy, I am.");

~rony

template <typename T>
using IsHappy = enable if t<Happy::eval<T>()>;

~rony

template <typename T, typename = IsHappy<T>>
void pursuit_of happyness() { ~~~ }

31

Traditional First/Rest Implementation

template <template <typename...> class First,
template <typename...> class... Rest>
struct Compose<First, Rest...> {
template <typename T>
static constexpr auto eval() {
return First<T>::value &&
Compose<Rest...>: :template eval<T>();

}
};

template <>
struct Compose<> {
template <typename>
static constexpr auto eval()
{ return true; }

};

32

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

16

Modern C++ Interfaces

Simpler Non-Recursive Implementation

= A C++14 constexpr function can simplify the implementation:

template <template <typename...> class... Preds>
struct Compose {
template <typename T>
static constexpr auto eval() {
auto results = { Preds<T>::value... };
auto result = true;
for (auto el : results)
result &= el;
return result;

};

= ..and a C++17 fold operation could simplify even further.
33

Dealing With Complex Constraints

= We’ve seen a number of reasonably complex constraints so far.

* [n such situations, it can help to have a framework available to
automate away some of the complexity.
* Luckily, C++ has arich collection of idioms to deal with
complexity.
= We'll reuse some of these traditional idioms to write a
framework:
* Represent a compile-time data structure as a complex, nested
type.
* Use “expression template” operators to generate the complex
type.
= We’ll write a constraint expression template language and parser
that can handle the usual and, or, xor, and not operators.

34

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

Modern C++ Interfaces

Template Trees

= Rather than use a simple linear template template predicate list,
we’'ll use a template template predicate tree structure.
* Represent a compile-time data structure as a complex, nested
type.
* Use “expression template” operators to generate the complex
type.
= We’ll write a constraint expression template language and parser
that can handle the usual and, or, xor, and not operators.

35

Abstract Syntax Trees

= A type predicate expression like

predl & (pred2 | !pred3)

= Should generate a parse tree like

&
VN
predl |
VRN

pred2 !

pred3

where the leaves of the AST are templates. iy

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

18

Modern C++ Interfaces

Idiomatic Blast From The Past

Actually, we don’t really want a parse tree, per se, but a (compile
time) type that contains the information from the parse tree,
similar to the use of a type list to represent a linear sequence of

types.
The leaves of the expression tree are values of the form

template <typename> class Pred; // a type predicate

For example, most of the predicates in <type_traits> qualify.

We'll employ a compile-time-only version of the venerable
Expression Template idiom in the implementation.

Here’s the root type of the AST that will come in handy later:

struct E {}; // every node type is an E of some sort

37

And/Or...

We’ll implement binary operators like this:

template <typename P1, typename P2>
struct And : E {
template <typename T>
static constexpr bool eval()
{ return P1::template eval<T>()
& P2::template eval<T>(); }

¥

template <typename P1, typename P2>
struct Or : E {

~rons

s

38

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

19

Modern C++ Interfaces

&/|...

» For clarity and convenience, we’ll use an infix operator interface
to generate the type.

template <typename P1, typename P2>
constexpr And<P1, P2> operator &(P1, P2)
{ return And<P1, P2>(); }

= Note that we're interested entirely in the (compile time) return
type of the function rather than the (runtime) return value.

v’ Note the value of leveraging function template argument
deduction to perform compile-time type algebra.

39

= Unary operators are even easier:

template <typename P>
struct Not : E {
template <typename T>
static constexpr bool eval()
{ return !P::template eval<T>(); }

}s
template <typename P>

constexpr Not<P> operator !(P)
{ return Not<P>(); }

40

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

20

Modern C++ Interfaces

Leaves

» The leaves in our compile time AST are unary type predicates.

template <template <typename> class Pred>
struct Id : E {
template <typename T>
static constexpr bool eval()
{ return Pred<T>::value; }

};

template <template <typename> class Pred>
constexpr Id<Pred> pred()
{ return Id<Pred>(); }

41

<type_traits>

» [t's convenient to provide versions of standard unary type traits
as leaves:

constexpr auto isTriviallyCopyable

= pred<std::is_trivially copyable>();
constexpr auto isStandardLayout

= pred<std::is_standard layout>();
constexpr auto isPod

= pred<std::is_pod>();
constexpr auto isLiteralType

= pred<std::is_literal type>();
// ad infinitum...

42

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

21

Modern C++ Interfaces

Constructing Complex Predicates

= We perform a compile time traversal of the type representation
of the AST with a type argument:

constexpr auto my needs // build an AST
= isClass & (isPod | !isPolymorphic) ~ isShape;

constexpr auto your_needs // build another

= 1sClass & hasVirtualDestructor
~ IisNothrowCopyAssignable;

43

Compile Time Evaluation

= We can evaluate an AST directly:

my _needs.eval<T>()

= _.buta little syntactic sugar is always in good taste:

template <typename T, typename AST> // get a bool
constexpr bool constraint(AST)
{ return AST().template eval<T>(); }

template <typename T, typename AST> // get a type...maybe
using Constraint =
std::enable_if t<constraint<T>(AST())>;

44

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

22

Modern C++ Interfaces

Using the Predicate
= Sometimes we need a Boolean constraint:

static_assert(constraint<T>(my_needs),
"My idiosyncratic needs are unmet.");

= Sometimes we’re in SFINAE mode:

template <typename Me, typename You,
typename = Constraint<Me, my needs>,
typename = Constraint<You, your needs>>
void oy vey(Me & me, You &8you) { ~~~ }

45

That’s Not What [Meant!

= Unfortunately, this implementation—intended to simplify our
use of SFINAE—causes sporadic compilation errors.

* The overloaded operators are too accommodating.

template <typename P1, typename P2>
constexpr And<P1l, P2> operator &(P1, P2)
{ return And<P1, P2>(); }

= This overload will be considered for any & that accepts at least
one class argument...

v’ ...which is not what I meant.

46

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

23

Modern C++ Interfaces

What I Mean Is...
= We'll call in SFINAE to rescue our SFINAE toolkit:

template <typename... Ps>
using all E t = enable if t<all E<Ps...>::value>;
template <typename P1, typename P2, // I meant...
typename = all_E t<P1, P2>> // ...only ASTs!
constexpr And<P1l, P2> operator &(P1, P2)
{ return And<P1, P2>(); }

47

What I Mean To Say Is...

» [ncreasingly our designs require us to distinguish not only
among predefined and user-defined conversions, but to include
arbitrary constraints and properties in making compile time
decisions.

* One way to look at the situation is that we're no longer writing
code just in terms of “first order” properties of types, but on
design-specific, ad hoc “second order” properties.

= Some of these properties are extracted from types by the
interface, some are offered to the interface by the type.

48

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

24

Modern C++ Interfaces

An Emergent Property of C++’s Complexity

= SFINAE is increasingly employed in modern C++ to make these
decisions, and the result is that interfaces are—or can be—
simpler and more natural.

= This simplicity is an emergent property of C++’s complexity.
= Newer features of the C++ language and standard library provide
straightforward ways to apply SFINAE to our designs.

49

The End

Thanks for Coming!

50

Copyright © 2017 by Stephen C. Dewhurst and Daniel Saks

25

