28 March 2017: Variadic CRTP | Steve Dewhurst

Variadic CRTP

Curious, but Recurring

The Curiously-Recurring Template Pattern (CRTP) is a pleasant and common C++ coding
idiom. Basically it’s a way for a class to inherit a self-customized capability. For the
traditional first example of CRTP, consider an object counter:

template <typename T>
class Ctr {
public:
Ctr() { ++ctr_; }
Ctr(Ctr const &) { ++ctr_; }
~Ctr() { --ctr_; }
static size_t get() { return ctr_; }
private:
static size t ctr_;

}s
template <typename T> size t Ctr<T>::ctr_ = 0;

To inherit this object-counting capability we specialize Ctr with ourselves and then derive
from the specialization:

class Thingl : public Ctr<Thingl> { ~~~ };
class Thing2 : public Ctr<Thing2> { ~~~ };

Thingl and Thing2 each inherit a properly self-customized object counting capability
The Barton-Nackman Trick is another traditional example:

template <typename T>

class Eq {
friend bool operator ==(T const &a, T const &b)
{ return a.compare(b) == 0; }
friend bool operator !=(T const &a, T const &b)
{ return a.compare(b) != 0; }
}s

template <typename T>
class Rel {
friend bool operator <(T const &a, T const &b)
{ return a.compare(b) < 0; }
friend bool operator <=(T const &a, T const &b)
{ return a.compare(b) <= 0; }
friend bool operator >(T const &a, T const &b)
{ return a.compare(b) > 0; }
friend bool operator >=(T const &a, T const &b)

Page 1 of 6

28 March 2017: Variadic CRTP | Steve Dewhurst

{ return a.compare(b) >= 0; }

}s

class Thing3 : public Eq<Thing3>, public Rel<Thing3> {
public:
int compare(Thing3 const &rhs) const;

~A~
}s

Thing3 inherits customized equality and relational operators.

More Flexible CRTP

One problem with this traditional application of CRTP is that it’s inflexible. For example,
Thingl objects share an object counter. What if we’d like a version of Thingl that can
instead be compared with equality operators? We can get this level of flexibility by
specifying the CRTP capability as a template template parameter.

template<template <typename> class CRTP>
class Thingl: public CRTP<Thingl<CRTP>> { ~~~ };

Now we can specify versions of Thingl that have a counter or some other inherited
capability.

Thingl<Ctr> a; // gets an object counter
Thingl<Eq> b; // gets equality operators

We can get additional flexibility with a variadic template template parameter. For example,
here’s a counter capability similar to our original counter that accepts two template
arguments:

template <typename T, typename I = size t>
class ObjectCounter {
public:
ObjectCounter() { ++ctr_; }
ObjectCounter() { ++ctr_; }
~ ObjectCounter() { --ctr_; }
static I get() { return ctr_; }
private:
static I ctr_;

}s

template<template <typename...> class CRTP>
class Thingl: public CRTP<Thingl<CRTP>> { ~~~ };

Thingl<Ctr> a; // gets an object counter
Thingl<ObjectCounter> c; // gets a fancy counter

Page 2 of 6

28 March 2017: Variadic CRTP | Steve Dewhurst

However, we still don’t have the flexibility to take an arbitrary number of CRTP capabilities.
For example, we might want to have an object counter (or two), relational operators, and
equality operators. We can accomplish this with template template parameter packs or
variadic template template parameter packs.

template<template <typename...> class... CRTPs>
class Thing3 : public CRTPs<Thing3<CRTPs...>>... { ~~~ };

Thing3<Ctr, Eq> d; // counted, equality comparable
Thing3<Ctr, Eq, Ctr2, Rel> e; // the works!

Restricted Numeric Types

As an example of how this approach might be of practical use, let’s create a numeric type
toolkit that allows specification of restricted numeric types. Fedor Picus implemented a
similar but much more sophisticated facility circa 2008 (he called them either “armored
built-in types” or “restricted value types” depending on the context), but at that time he
didn’t have variadic templates at his disposal.

Let’s define a number as a very basic numeric type that holds a value and inherits a set of
properties expressed as CRTP base classes.

template <typename N, template <typename...> class... CRTPs>
class Number : public CRTPs<Number<N, CRTPs...>>... {
public:
using S = decay_t<underlying arithmetic_type t<N>>;
constexpr Number() // note: intentionally uninitialized
{}
constexpr Number(S value)
: value (value) {}
constexpr S value() const
{ return value_; }
constexpr void set_value(S a)
{ value_ = a; }
private:
N value_;

}s

We can then define sets of interesting numeric capabilities. For example, we might want a
particular type to be output-streamable

template <typename T>
class Stream_i {
friend std::ostream &operator <<(std::ostream &a, T b)
{ return a << b.value(); }

}s

or shiftable

Page 3 of 6

28 March 2017: Variadic CRTP | Steve Dewhurst

template <typename T>
class Shift_i {
friend T operator <<(T a, T b)
{ return T(a.value() << b.value()); }
friend T operator >>(T a, T b)
{ return T(a.value() >> b.value()); }

}s
or equality-comparable
template <typename T>

class Eq_i {
friend constexpr bool operator ==(T a, T b)

{ return a.value() == b.value(); }
friend constexpr bool operator !=(T a, T b)
{ return a.value() != b.value(); }

}s

and so on. A restricted numeric type is generated by selecting an underlying type and
specifying what operations are available on the type.

using restricted_int = Number<int, Eq_i, Rel_i, Add_i, Stream_i>;

This restricted int can be compared with relational and equality operators, added, and
streamed. By design, it doesn’t support other operations like subtraction, multiplication, or

increment.

Hardware Registers

Some of the orneriest numeric types you're likely to find are those used to represent
memory-mapped registers. They want to be aligned just right, have a particular number of
bytes, support only some operations, either do or don’t want to be read or written, may
change value without warning, and so on. Let’s start by creating a “read /write register”
type that is restricted to an expected set of operations.

unsigned volatile;
Number<hw_register, Eq_i, Bit_i, Shift_i>;

using hw_register
using rw_register

This register type is a read/write unsigned type that can be compared for equality, used
with bitwise operators, and shifted. What if we need read only or write only registers?

Dan Saks came up with a useful facility for expressing read only, write only, and unused
data types with template type wrappers. For example, here’s a write only wrapper:

template <typename T>
class write_only {
public:
write only() {}
write only(T const &v) : m_(v) {}
void operator =(T const &v) { m_ = v; }

Page 4 of 6

28 March 2017: Variadic CRTP | Steve Dewhurst

write only(write _only const &) = delete;

write_only &operator =(write_only const &) = delete;
private:

T m_;

}s

We can use these wrappers to augment the meaning of our register type that we earlier
provided through CRTP.

using wo_register = write_only<rw_register>;
using ro_register = read_only<rw_register>;
using un_register = unused<rw_register>;

Now it’s fairly straightforward to lay out a well-behaved memory-mapped device:

struct UART {
un_register ULCON; // line control
un_register UCON; // control
ro_register USTAT; // status
wo_register UTXBUF; // transmit
ro_register URXBUF; // receive
rw_register UBRDIV; // baud rate divisor

}s

We can be more restrictive if we want. For instance, it probably doesn’t make sense to be
able to shift a status register, and perhaps we’re not interested in the value of the register
as a whole, but only with the values of individual sets of bits within the register.

using status_register = Number<hw_register, Bit_i>;
using ro_status_register = read_only<status_register>;

N

struct UART {

un_register ULCON; // line control
un_register UCON; // control
ro_status_register USTAT; // status
wo_register UTXBUF; // transmit
ro_register URXBUF; // receive
rw_register UBRDIV; // baud rate divisor

}s
Never Ass|u|me

As always when working with hardware, it makes a lot of sense to verify one’s
assumptions. While we’re at it, we may as well verify our assumptions about all
specializations of Number.

template <typename N, template <typename...> class... CRTPs>
class Number : public CRTPs<Number<N, CRTPs...>>... {
public:

Page 5 of 6

28 March 2017: Variadic CRTP | Steve Dewhurst

constexpr Number() // note: intentionally uninitialized

{ check(); }

constexpr Number(S value)

~o~

private:

: value_(value) { check(); }

static constexpr void check() {

}

constexpr auto is_arith
= is_arithmetic<underlying arithmetic_type_t<N>>::value;

constexpr auto is_sl = is_standard_layout<Number>::value;
static_assert(sizeof(Number) == sizeof(N),

"problem with size of Number");
static_assert(alignof(Number) == alignof(N),

"problem with alignment of Number");
static_assert(is_arith,

"underlying type for Number must be arithmetic");
static_assert(is_sl, "Number is not standard layout");

N value_;

}s

Unfortunately, not all compilers used to compile this code pass the test. Some C++
compilers have trouble applying the Empty Base Class Optimization (EBO) under multiple
inheritance, causing the first static assertion in check to fail if there is more than a single
CRTP base class. Others fail one or more of the remaining assertions for one reason or
another, depending on the size and alignment of the value_ data member.

In next weak’s installment, we’ll see how to mitigate these issues by having Number ask
pointed personal questions of the compiler and customize its implementation based on the
answers received.

© 2017 by Stephen C. Dewhurst

stevedewhurst.com

Page 6 of 6

